
Weird machines, exploitability, and provable unexploitability
Thomas Dullien

thomas.dullien+wm@googlemail.com

ABSTRACT
The concept of exploit is central to computer security, particularly
in the context of memory corruptions. Yet, in spite of the centrality
of the concept and voluminous descriptions of various exploitation
techniques or countermeasures, a good theoretical framework for
describing and reasoning about exploitation has not yet been put
forward.

A body of concepts and folk theorems exists in the community of
exploitation practitioners; unfortunately, these concepts are rarely
written down or made sufficiently precise for people outside of this
community to benefit from them.

This paper clarifies a number of these concepts, provides a clear
definition of exploit, a clear definition of the concept of a weird
machine, and how programming of a weird machine leads to ex-
ploitation. The papers also shows, somewhat counterintuitively,
that it is feasible to design some software in a way that even pow-
erful attackers - with the ability to corrupt memory once - cannot
gain an advantage.

KEYWORDS
exploitation, memory corruptions

PROBLEM DESCRIPTION
The concept of exploit is central in computer security. While intu-
itively clear, it has not been formalized - even in the very restricted
setting of memory-corruption attacks. Two largely disjoint com-
munities have worked on exploring the process of exploitation:
’Exploit practitioners’ (EPs) with focus on building working ex-
ploits have been investigating the topic at least since the infamous
Morris worm, and academic researchers, who really began focus-
ing on the problem with the re-invention and popularization of
return-oriented programming (ROP) by Shacham et al [20].

The aversion of the EP-community to formal publishing1 has
lead to an accumulation of folklore knowledge within that commu-
nity which is not properly communicated to a wider audience; this,
unfortunately, often leads to duplicated effort, re-invention, and
sometimes even acrimony between members of the two communi-
ties [11].

The concept of a weird machine is informally familiar in the EP
community, but widely misunderstood outside of that community.
It has numerous implications, most importantly:

• The complexity of the attacked program works in favor of
the attacker.

• Given enough time for the preparation of an exploit, non-
exploitability is the exception, not the rule. Even extremely
restricted programs consisting of little more than a linked

1Or worse, the incentive structure that keeps the EP community from publishing at all.

Conference’17, July 2017, Washington, DC, USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

list with standard operations allow an attacker sufficient
degrees of freedom.

• Questions of ’exploitability’ are often decoupled from is-
sues of control-flow or compromising the instruction pointer
of a target: Control flow integrity is just one security prop-
erty that can be violated, and perfect CFI does not imply
security. Attackers aim to violate CFI because it provides
the most convenient and powerful avenue to violate se-
curity properties, not because it provides the only such
avenue.

• If exploitability is a result of target’s complexity, the bound-
ary where complexity causes exploitability is much lower
than commonly appreciated.

The misunderstandings surrounding weird machines are particu-
larly unfortunate as the framework of weird machines subsumes
many individual techniques; the framework predicts that many
exploitation countermeasures are overly specific and bound to be
bypassable. Among other things, the bypassing of most early ROP
countermeasures could have been easily predicted without the
ensuing series of tit-for-tat papers, and the somewhat limited ef-
fectiveness of control-flow-integrity (CFI) [1, 9, 22] against many
attacks such as counterfeit-object-oriented programming (COOP)
[16] as well as the existence of data-oriented-programming (DOP)
[12] would have come as less of a surprise.

Contributions. This paper provides the following contributions:
(1) Proper definitions and formalizations of the ’folk theorems’

of the EP community.
(2) A clear definition of ’exploit’ which better matches real-

world requirements than the popular approach of showing
Turing-completeness of emergent computation.

(3) A first step toward understanding what distinguishes un-
exploitable from exploitable programs. The paper presents
two implementations of the same program. An attacker
with the ability to flip a bit of his choosing can exploit
one variant, while the other can be shown to be immune
even to this powerful attacker. The differences between
the programs hint at differences in computational power
obtained by the attacker - which depend on the choice of
data structures for the program implementation.

The intuitions behind and implications of 1 and 2 are common
knowledge, all formalisms, definitions and proofs, as well as 3, are
contributions of the author(s).

We hope that this paper bridges the gap between the two com-
munities and provides a common vocabulary.

RELATEDWORK
The concept of a weird machine that will be discussed in this paper
has found numerous mentions over the years; not all these mentions
refer to the same concept. [8] discussed weird machines but only
provided an informal description, not a definition. The Langsec

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

community uses the term in their literature, often informally and
vaguely defined, and with slightly varying meanings. [2–4]

[24] discusses weird machines in proof-carrying code (PCC)
that arise when the PCC system fails to capture all necessary and
sufficient conditions for safe program execution; Contrary to the
present paper, he focuses on computations involving unexpected
control flow and the proof-carrying-code scenario. This paper is
inspired heavily by the use of ’dueling’ finite-state transducers in
that paper, though.

Computation (and correctness) in the presence of faults has been
studied in [25] , which introduces a lambda-calculus to calculate
correctly given hardware faults. [14] studies automatic detection
of two classes of heap corruptions in running code by keeping
multiple copies of a randomized heap.

By and large, while many academic and non-academic papers
have studied concrete exploitation instances, few have considered
foundational questions.

We will see later that weird machines arise when an abstract,
intended machine and a concrete implementation which tries to
simulate the abstract machine fails to do so. Studying equivalence
between automata which simulate each other at different levels of
abstraction has been studied by themodel-checking and verification
community using stuttering bisimulation extensively. [5, 10, 23]
This paper eschews the somewhat specialized language of stuttering
bisimulation to allow broader accessibility.

OVERVIEW OF THE PAPER
In order to get to the important results of the paper, a fair bit of
set-up and definitions are needed. The paper first defines ’the soft-
ware the developer intended to write’ and a simple computing
environment for which this software is written. This is followed
by further definitions that permit describing erroneous states and
distinguishing between erroneous states with and without secu-
rity implications. Finally, a precise definition of exploit and weird
machine is provided.

A running example is used throughout these sections. Two im-
plementations of the same software are introduced, along with
a theoretical attacker. We prove that one implementation cannot
be exploited while the other implementation can, and discuss the
underlying reasons.

Finally, we discuss the implications for exploit mitigations, control-
flow integrity, and software security.

1 THE INTENDED FINITE-STATE MACHINE
(IFSM)

The design of any real software can be described as a potentially
very large and only implicitly specified finite state machine (or
transducer, if output is possible)2. This FSM transitions between
individual states according to inputs, and outputs data when nec-
essary. Since any real software needs to run on a finite-memory
computing device, the nonequivalence of a FSM to a Turingmachine
does not matter - any real, finite-input software can be modelled
as a FSM (or FST) given a sufficiently large state set.

2The bisimulation community uses the concept of process, which is similar - but more
readers will be familiar with FSMs, and they serve our purpose well enough

For simplicity, we will use the notation IFSM in the rest of the
paper even when the machine under discussion is a transducer.

For situations when an IFSM needs to be specified formally,
recall that a finite-state transducer can be described by the 7-tuple
θ = (Q, i, F , Σ,∆,δ ,σ) that consists of the set of states Q , the initial
state i , the final states F , input- and output alphabets Σ and ∆, a
state transition function δ : Q × Σ→ Q and the output function σ
which maps Q × Σ→ ∆.

1.1 Software as emulators for the IFSM
Since any real-world software can be modelled as an IFSM, but has
to execute on a real-world general-purpose machine, an emulator
for the IFSM needs to be constructed. This process is normally done
by humans and called programming or development, but can be done
automatically in the rare case that the IFSM is formally specified.

Why consider software as emulator for the IFSM instead of ex-
amining software as the primary object of study? The answer lies
in the very definition of bug or security vulnerability: When the
security issue arises from a software flaw (in contrast to a hardware
problem such as [13]) , it is impossible to even define ’flaw’ without
taking into account what a bug-free version of the software would
have been. Viewing the software as a (potentially faulty) emulator
for the IFSM allows the exploration of how software faults lead to
significantly larger (in the state-space sense) emulated machines.

1.2 Example IFSM: A tiny secure
message-passing server

We introduce an example IFSM with the properties of being small,
having a clearly-defined security boundary, and allowing for enough
complexity to be interesting. We describe the IFSM informally first
and subsequently give a formal example.

Informally, our example IFSM is a machine that remembers a
password-secret pair for later retrieval through re-submission of
the right password; retrieval removes the password-secret pair. We
set an arbitrary limit that the system need not remember more than
5000 password-secret pairs.

A diagram sketching the IFSM is shown on page 3 in Figure 1.
To transform this sketch into a formally defined FSM, we re-

place the memory of the described machine with explicit states. We
denote the set of possible configurations ofMemory withM:

M :=

∅,
{(p1, s1)},
. . . ,

{(p1, s1), . . . , (p5000, s5000)}

pi , si ∈ bits32\{0}
pi , pj

The central looping stateA in the informal diagram can be replaced
by a family of states AM indexed by a memory configurationM ∈
M. The starting configuration transitions intoA∅ , and after reading
(p, s), the machine transitions into A{(p,s)} and so forth. With the
properly adjusted transitions, it is now clear that we have a proper
FST (albeit with a large number of individual states).

The formal specification of the example IFSM in the 7-tuple form
θ = (Q, i, F , Σ,∆,δ ,σ) is as follows:

2

Read input password-secret pair (A)
read(p)
read(s)

start

Store pair in memory (B)
Memory ← Memory ∪ {(p, s)}

Output the requested secret (C)
Memory ← {(p′, s ′) ∈ Memory | p′ , p}
print(s ′)

Output error message (D)
print(0)

IF condition b:
∀(p′, s ′) ∈ Memory : p′ , p
|Memory | ≤ 4999

s , 0,p , 0

Switch by condition

IF condition c:
∃(p′, s ′) ∈ Memory : p = p′

s , 0

IF condition d:
s = 0
∨p = 0

∨ |Memory | = 5000

Figure 1: A diagrammatic sketch of the example IFSM

Q := {AM ,M ∈ M}, i := A∅, F := ∅
Σ := {(p, s)|p, s ∈ bits32}, ∆ := {s ∈ bits32}

δ := AM × (p, s) →

AM∪(p,s) if

(p, s) < M
∧|M | ≤ 4999
∧s , 0

AM\(p,s) if (p, s) ∈ M
AM otherwise

σ := AM × (p, s) →
{
s ′ if (p, s ′) ∈ M
0 if s = 0 ∨ |M | = 5000

1.3 Security properties of the IFSM
Not every malfunction of a program has security implications. To
distinguish between plain erroneous states and erroneous states
that have security implications, security properties of the IFSM
need to be defined.

Security properties are statements (possibly about probabilities)
over sequences of states, inputs, and outputs of the IFSM. They are
part of the specification of the IFSM. Not every true statement is a
security property, but every security property is a true statement.

The attackers goal is always to violate a security property of the
IFSM when interacting with the emulator for the IFSM.

1.3.1 Security properties of the example IFSM. The example
IFSM should satisfy the informal notion that ”you need to know (or
guess) the right password in order to obtain a stored secret”.

Intuitively, the attacker should not be able to ’cheat’ - there
should be no way for the attacker to somehow get better-than-
guessing odds to obtain the stored secret from the IFSM.

In order to make this precise, we borrow ideas from the crypto-
graphic community, and define a multi-step game where an attacker
and a defender get to take turns interacting with the machine, and
we specify that there is no way that the attacker can gain an advan-
tage.

The game mechanics are as follows:

(1) The attacker chooses a probability distribution A over
finite-state transducers Θexploit that have an input alpha-
bet ΣΘexploit = ∆ and output alphabet ∆Θexploit = Σ. This
means that the attacker specifies one or more finite-state
transducers that take as input the outputs of the IFSM, and
output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p, s
from bits32 according to the uniform distribution.

(3) The attacker draws a finite-state transducer from his dis-
tribution and is allowed to have it interact with the IFSM
for an attacker-chosen number of steps nsetup.

(4) The defender sends his (p, s) to the IFSM.
(5) The attacker gets to have hisΘexploit interact with the IFSM

for a further attacker-chosen number of steps nexploit.

3

The probability for Θexploit to obtain the defenders secret should
be no better than guessing. Let oexploit be the sequence of outputs
that the Θexploit produced, and oIFSM the sequence of outputs the
IFSM produced during the game. Then our desired security property
is:

P[s ∈ oIFSM] ≤
nsetup + nexploit
|bits32 |

=
|oexploit |
232

The probability here is given a random draw from the attacker-
specified distribution over transducers. This encodes our desired
property: An attacker cannot do better than randomly guessing the
password, and the attacker cannot provide a program that does any
better.

2 A TOY COMPUTING ENVIRONMENT
The IFSM itself is a theoretical construct. In order to ’run’ the
IFSM, a programmer needs to build an emulator for the IFSM, and
this emulator needs to be built for a different, general-purpose
computing environment, which will be introduced next.

For our investigation, the Cook-and-Reckhow [6] RAM machine
model is well-suited. Their machine model covers both random-
access-machine variants (Harvard architectures) and random-access-
stored-program variants (for von-Neumann-Architectures); our dis-
cussion applies equally to both, but our concrete example assumes
a Harvard architecture.

The machine model consists of a number of registers as well as
the following operations:

LOAD(C, rd) : rd ← C Load a constant
ADD(rs1 , rs2 , rd) : rd ← rs1 + rs2 Add two registers

or a register and constant
SUB(rs1 , rs2 , rd) : rd ← rs1 − rs2 Subtract two registers

or a register and constant
ICOPY(rp , rd) : rd ← rrp Indirect memory read
DCOPY(rd , rs) : rrd ← rs Indirect memory write
JNZ/JZ(r , Iz) Transfer control to

Iz if r is nonzero, zero
READ(rd) : rd ← input Read a value from input
PRINT(rs) : rd → output Write a value to output

While the original model assumes an infinite quantity of infinite-
size registers, we fix the size of our registers and the number of these
registers arbitrarily. We do this for both theoretical (it simplifies
some counting arguments later) and for practical reasons (real
machines have finite RAM).

For the purposes of this paper, we fix the size of registers/memory
cells to be 32-bit numbers (the set of which we denote bits32), and
the number of registers/memory cells to 216. We also denote the
memory cells r0, . . . , r6 as registers. This has no effect at themoment,
but will be used later when we introduce attacker models.

The set of possible memory configurations of the machine is
denoted by Qcpu ; a program for this cpu is denoted with ρ, and
individual lines in this program is denoted by ρi where i is the line
number.

Note that the state of the machine is fully determined by the
tuple ((q1, . . . ,q216) =: ®q, ρ, ρi): The state of all memory cells, the

program that is running, and the line in the program the machine
will execute next.

2.1 Example IFSM: What to emulate?
There are many different ways of emulating the IFSM in the toy
computing environment. Examining our informal diagram again,
emulation needs to be constructed for the three conditional edges
in the diagram (labeled b, c, and d) as well as the 3 different state
modifications (labeled B, C, D).

2.1.1 Example IFSM emulation: Variant 1. The first emulator of
the example IFSM uses registers/cells 0 through 5 as scratch for
reading input, and cells 6 to 10006 as a simple flat array for storing
pairs of values. It uses no sophisticated data structures and simply
searches memory for empty pairs of memory cells, zeroing them in
order to release them.

Full source code for the emulator can be found on page 13 in
figure 5.

2.1.2 Example IFSM emulation: Variant 2. The first example does
not use any sophisticated data structures. TheMemory of the IFSM
is emulated by a simple flat array, at the cost of always having to
traverse all 5000 elements of the array when checking for a value.

The second variant implements the same IFSM, but in order to
be more efficient, implements Memory as two singly linked lists,
one for keeping track of free space for password-secret tuples, and
one for keeping track of currently active password-secret tuples.

Full source code for the emulator for variant 2 can be found on
page 14 in figure 6.

3 ERRORS - REACHING AWEIRD STATE
A common problem when investigating foundations of computer
security is the difficulty of even defining exactly what a bug is -
defining precisely when a program has encountered a flaw and is
no longer in a well-defined state. Using the abstraction of the IFSM
and viewing the software as an emulator for the IFSM, this becomes
tractable.

Intuitively, a program has gone ’off the rails’ or a bug has oc-
curred when the concrete cpu has entered a state that has no clean
equivalent in the IFSM - when the state of the cpu neither maps
to a valid state of the IFSM, nor to an intermediate state along the
edges of the IFSM.

To make this notion formal, we define two mappings (remember
that Qcpu is the set of possible states of the concrete cpu on which
the IFSM is emulated, and Qθ is the set of possible states of the
IFSM):

Definition 3.1 (Instantiation). Given an IFSM θ and a target ma-
chine cpu on which the IFSM is emulated by means of a program ρ,
the instantiation mapping

γθ , cpu, ρ : Qθ → P(Qcpu)
is a mapping that maps states of the IFSM to the set of states of the
concrete cpu that can be used to represent these states. Note that it
is common that one state in the IFSM can be represented by a large
number of states of the target machine.

4

Definition 3.2 (Abstraction). Given an IFSM θ and a target ma-
chine cpu on which the IFSM is emulated by means of program ρ,
the partial abstraction mapping

αθ,cpu,ρ : Qcpu → Qθ

maps a concrete state of the target machine to the IFSM state that
it represents. Note that this is a partial mapping: There are many
states of cpu which do not map to an IFSM state. We denote the set
of states on which α is defined as Qsane

cpu .
During the process of emulating the IFSM, the target machine

is necessarily in states on which αθ,cpu,ρ is not defined - since
following an edge in the IFSM diagram often involves multi-step
state modifications to reach a desired target state of the IFSM. To
differentiate these states from erroneous states, we define transitory
states.

Intuitively, a transitory state is a state occuring during the emu-
lation of an edge in the state machine diagram of the IFSM that is
always part of a benign and intended transition.

Definition 3.3 (Transitory State). Given an IFSM θ and a target
machine cpu on which the IFSM is emulated by means of the pro-
gram ρ, a transitory state qtrans of the cpu is a state that satisfies
all of the following:

(1) there exists S, S ′ ∈ Qθ and σ ∈ Σ so that δ (S,σ) = S ′ -
the transition from S to S ′ given input σ is an existing
transition in the IFSM, hence an intended transition.

(2) there exists qS ∈ γθ,cpu,ρ (S),qS ′ ∈ γθ,cpu,ρ (S ′) and a
sequence of state transitions

qS →n qtrans →n′ qS ′

so that αθ,cpu,ρ is not defined on all intermediate states
and so that all sequences of transitions from qtrans lead
to qS ′ , irrespective of any addition input and before the
machine performs any output.

The set of transitory states will be denoted Q trans
cpu from here on.

Clearly, if irrespective of any attacker actions (input) themachine
always transitions into a well-defined and intended state without
any observable effects, the transitory state is not relevant for the
security properties of the IFSM.

Example 3.4 (Example mappings for Emulator Variant 1). For our
very simple first example, we can provide the relevant mappings
explicitly. An element of Qcpu can be described by the state of all
memory cells (®q) and the program line ρi . Let τ (i) := 2i + base.
Then

γθ,cpu,ρ (AM) =

®q ∈ Qcpu so that
∀(p, s) ∈ M ∃i ∈ N<5000 with
(qτ (i),qτ (i)+1) = (p, s)

∧(∀i , j with (qτ (i),qτ (i)+1) = (qτ (j),qτ (j)+1)
⇒ qτ (i) = qτ (i)+1 = 0)

Once we have γ , we can define α in terms of it: Let q′ ∈ Qcpu . Then

αθ,cpu,ρ :
⋃

M ∈M
γθ,cpu,ρ (AM) → Q

αθ,cpu,ρ (q′) = AM with q′ ∈ γθ,cpu,ρ (AM)
Now we have all the pieces in place to define erroneous and

non-erroneous states.

3.1 Defining weird states
With the above definitions we can partition the set of possible states
Qcpu into three parts: States that directly correspond to states of
the IFSM, transitory states that are just symptoms of the emulator
transitioning between valid IFSM states, and all the other states.

These other states are the object of study of this paper, and the
principal object of study of the exploit practitioner community.
They will be called weird states in the remainder of this paper - to
reflect the fact that they arise unintentionally and do not have any
meaningful interpretation on the more abstract level of the ISFM.

Definition 3.5 (Weird state). Given an IFSM θ , the computing
environment cpu and the program ρ that is supposed to emulate θ ,
the set Qcpu can be partitioned into disjoint sets as follows:

Qcpu = Q
sane
cpu Û∪Q trans

cpu Û∪Qweird
cpu

An element of Qcpu that is neither in Qsane
cpu nor in Q trans

cpu is called
a weird state, and the set of all such states is denoted as Qweird

cpu .

3.1.1 Possible sources of weird states. There are many possible
sources for weird states. Some of these sources are:

Human Error in the construction of the program ρ. This is
probably the single most common source of weird states
in the real world: Since the process of constructing ρ is
based on humans that often have to work on a non-existent
or highly incomplete specification of the IFSM, mistakes
are made and program paths through ρ exist that allow
entering a weird state. Real-world examples of this include
pretty much all memory corruption bugs, buffer overflows
etc.

Hardware Faults during the execution of ρ. While determin-
istic computing is a convenient abstraction, the hardware
of any real-world computing system is often only proba-
bilistically deterministic, e.g. deterministic in the average
case with some low-probability situations in which it non-
deterministically flips some bits. A prime example for this
is the widely-publicized Rowhammer hardware issue [13]
(and the resulting exploitation [17]) .

Transcription Errors that are introduced into ρ if ρ is trans-
mitted over a channel that can introduce errors. Examples
of this include ρ being stored on a storage medium / hard-
disk which due to environmental factors or hardware fail-
ure corrupts ρ partially.

4 WEIRD MACHINES: EMULATED IFSM
TRANSITIONS APPLIED TOWEIRD STATES

Given the definition of weird states, we now need to examine what
happens to the emulated IFSM when ρ can be made to compute on
a weird state.

4.1 Interaction as a form of programming
Before examining computation on weird states, though, we need to
clarify to ourselves that sending input to a finite state transducer is
a form of programming. The set of symbols that can be sent for a
restricted instruction set, and the state transitions inside the finite
state transducer are the semantics of these instructions. Sending

5

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
finite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program ρ to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit ∈ Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

Definition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu ∪Qtrans

cpu , Σ′,∆′,δ ′,σ ′)

Note that Qsane
cpu ∪ Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, ρ begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be different from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of ρ transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-defined and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on ρ and qinit , and determining the size
and shape of Qweird

cpu is very difficult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator ρ. This
means that while the machine is programmable, and the
semantics of the instructions are well-defined, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from ρ and qinit .

6

5 DEFINITION OF EXPLOITATION
Definition 5.1 (Exploitation). Given a method to enter a weird

state qinit ∈ Qinit
cpu ⊂ Qweird

cpu from a set of particular sane states
{qi }i ∈I ⊂ Qsane

cpu , exploitation is the process of setup (choosing the
right qi), instantiation (entering qinit) and programming of the
weird machine so that security properties of the IFSM are violated.

An exploit is "just" a program for the weird machine that leads
to a violation of the security properties. For a given vulnerability (a
method to move the machine into a weird state) it is likely that an
infinite number of different programs exist that achieve the same
goals by different means.

5.1 Exploitability of Variant 1 and Variant 2
A natural question arises when discussing "exploitability": Do the
different implementations of our IFSM have different properties
with regards to exploitability ? Does the attacker gain more power
by corrupting memory in one case than in the other? Is it possible
to implement software in a way that is more resilient to exploitation
under certain memory corruptions?

In order to answer these questions, we need a model for an
attacker.

5.1.1 The attacker model. How does one model the capabilities
of an attacker? The cryptographic community has a hierarchy of
detailed attacker models (known-plaintext, chosen-plaintext etc.)
under which they examine their constructs; in order to reason about
the exploitability of the different implementations we define a few
attacker models for memory corruptions. Some of these will seem
unrealistically powerful - this is by design, as resilience against
an unrealistically powerful attacker will imply resilience against
less-powerful attackers.

Arbitrary program-point, chosen-bitflip In thismodel, the
attacker gets to stop ρ while executing, flip an attacker-
chosen bit in memory, and continue executing.

Arbitrary program-point, chosen-bitflip, registers This
model is identical to the above with the exception that the
memory cells 0 through 6 are protected from the attacker.
This reflects the notion that cpu registers exist that are
normally not corrupted. The attacker still gets to stop ρ
while executing, and gets to choose which bit to flip.

Fixed-program point, chosen bitflip, registers In reality,
attackers can usually not stop the program at an arbitrary
point to flip bits. It is more likely that a transcription error
has happened (e.g. a bug has been introduced into ρ) at a
particular program point.

Various other models are imaginable.3
For the purpose of examining our two different variants, we

choose the second model: Arbitrary program-point, chosen-bitflip
anywhere in memory with the exception of the first 7 cells (reg-
isters). This choice is made out of convenience; obviously, more
powerful attackers exist.

We show next how the variant 2 (which uses the singly-linked
lists) is exploitable in this model, while variant 1 that uses flat arrays
3Other examples that are worth exploring: Fixed-program-point random-bit flip,
Fixed-program-point chosen-bit flip, Fixed-program-point chosen-byte-writing, Fixed-
program-point arbitrary memory rewriting etc.

turns out - possibly counterintuitively - to be not exploitable by
this powerful attacker.

5.1.2 Extending the security game. We defined security proper-
ties involving an attacker that can specify a probability distribution
over finite-state transducers from which an ”attacking” transducer
is drawn. In order to include our attacker models into this frame-
work, we simply allow the attacker to corrupt memory while the
two machines duel. Concretely, step 5 in the game described in 1.3.1
is extended so that the attacker can stop the attacked program at
any point, flip a single bit of memory, and then resume execution.

5.1.3 Proof of exploitability of Variant 2. In order to show ex-
ploitability, it is sufficient to provide a sequence of steps (including
a single chosen bitflip) that helps an attacker violate the assump-
tions of the security model. This is done using sequential diagrams
showing the internal state of the emulator over pages 8, 9 and 10.
In this example, the attacker gets to interact with the machine for a
few steps; the defender gets to store his secret in the machine, and
the attacker then gets to attempt to extract the defenders secret by
flipping just a single bit.

The machine begins in it’s initial state, e.g. all memory cells are
empty and the head of the free list is at zero.

The diagrams on pages 8, 9 and 10 show the first 15 non-register
memory cells, along with the points-to-relations between them. Fur-
thermore, the heads of the free and used linked lists are marked. Be-
tween two such diagrams, the actions that the defender or attacker
takes are listed, and the resulting state is shown in the subsequent
diagram.

Following the diagrams, it is clear that an attacker can exploit the
linked-list variant of the IFSM emulator using just a single bit-flip.
It is also clear that the specific sequence of inputs the attacker sends
to the emulator after the bit-flip constitutes a form of program.

5.1.4 Proof of non-exploitability of Variant 1. The proof idea is
to show that any attacker that is capable of flipping a single bit can
be emulated by an attacker without this capability with a maximum
of 10000 more interactions between attacker and emulated IFSM,
thus demonstrating that the attacker can not obtain a significant
advantage by using his bit-flipping ability. The number 10000 arises
from the fact that our IFSM has a maximum of 5000 (p, s)-tuples
in memory. In order to replace a particular memory cell in the
emulated IFSM, the emulation process needs to fill up to 4999 tuples
with temporary dummy values and remove them again thereafter,
leading to 9998 extra interactions for targeting a particular cell.

Assumption 1. We assume that the security property in 1.3.1 holds
for Variant 1 provided the attacker can not corrupt memory.

The proof proceeds by contradiction: Assume that an attacker
can specify a distribution over finite state transducers, a particular
bit of memory, and a particular point in time when to flip this bit
of memory, to gain an advantage of at least knowing one bit of the
secret:

P[s ∈ oIFSM] >
nsetup + nexploit
|bits31 |

=
|oexploit |
231

Let Θexploit be a transducer from the specified distribution that
succeeds with maximal advantage: No other transducer shall have

7

free_head=0

Step 1: Attacker sends (p0, s0), (p1, s1), (p2, s2).

free_head=9

p0 s0 n0 p1 s1 n1 p2 s2 n2

Step 2: Defender sends (pd , sd).

p0 s0 n0 p1 s1 n1 p2 s2 n2 pd sd nd

free_head=12

Step 3.1: Attacker sends (p2,X)

p0 s0 n0 p1 s2 n3 p2 s2 n2 pd sd nd

free_head=6

Step 3.2: Attacker sends (p1,X)

p0 s0 n0 p1 s1 n1 p2 s2 n2 pd sd nd

free_head=3

Step 3.3: Attacker sends (p3, s3)

Figure 2: The first part of the attack: Attacker set-up.

8

Step 3.3: Attacker sent (p2,X), (p1,X), (p3, s3)

p0 s0 n0 p3 s3 n3 p2 s2 n2 pd sd nd

free_head=6

Step 3.4: Attacker sends (p4, s4)

p0 s0 n0 p3 s3 n3 p4 s4 n4 pd sd nd

free_head=12

Step 4: The attacker gets to corrupt a single bit, and increments n3.

p0 s0 n0 p3 s3 n3 p4 s4 n4 pd sd nd

free_head=12

Step 5: The attacker sends (s4,X). The machine follows
the linked list, interprets s4 as password, and outputs n4.

p0 s0 n0 p3 s3 n3 p4 s4 n4 pd sd nd

free_head=12

The machine then sets the three cells to be free,
and overwrites the storted pd with free-head.

Figure 3: The attacker uses his memory-corrupting powers.

9

The machine just overwrote pd with free-head.

p0 s0 n0 p3 s3 n3 p4 s4 n4 12 sd nd

free_head=7

Step 6: The attacker sends (12,X) and obtains sd .

Figure 4: The final successful steps of the attack.

a greater gap between it’s probability of success and the security
boundary:

Θexploit = argmax
exploit

P[s ∈ oIFSM] −
|oexploit |
231

.
We now state two lemmas describing the set of states reachable

by an attacker. No proof is given, but they are easily verified by
inspecting the code.

Lemma 1. All states in Qtrans
cpu are of the following form: q ∈

Qsane
cpu with exactly one partially-stored tuple (corresponding to pro-

gram lines 36 and 37) - a short time period where one of the memory
cells contains a p , 0 with a stale s .

Lemma 2. An attacker that can flip a bit can only perform the
following 5 transitions:

(1) Replace a (p, s) tuple in memory with (p ⊕ 2i , s).
(2) Transition a state withmemory containing two tuples (p, s1), (p⊕

2i , s2) into a state where memory contains (p, s1), (p, s2).
(3) Replace a (p, s) tuple in memory with (p, s ⊕ 2i)
(4) Replace a (p, 2i) tuple with (p, 0)
(5) Replace a (2i , s) tuple with (0, s)

Note that 1, 3 and 5 are all transitions from Qsane
cpu to Qsane

cpu . Only 2

and 4 lead to Qweird
cpu .

Now consider S ∈ Qn
cpu the sequence of state transitions ofQcpu

for a successful attack by Θexploit .

Theorem 1. Any sequence of state transitions during a successful
attack that use transitions 1, 3, or 5 above can be emulated by an
attacker that can not flip memory bits in at most 10000 steps.

Proof. For all cases, the attacker without the ability to flip bits
sends (pi ,xi) tuples to fill all empty cells preceding the cell in which
Θexploit flips a bit, performs the action described, and then sends
(pi ,xi) to free up these cells again. We denote an arbitrary value
with x .

For case 1: If p was previously known to the attacker, an attacker
without the ability to flip bits can simply send (p,x), receive s , and
send (p ⊕ 2i , s). If p was not previously known to the attacker, p ⊕ 2i

is not either, and the game proceeds normally without attacker
advantage.

For case 3: If p was previously known, the attacker sends (p, 0),
receives s , and then sends (p, s ⊕ 2i). If p was not known to the
attacker, the game proceeds normally without attacker advantage.

For case 5: The value p = 2i must have been known, and the
transition can be emulated by simply sending (2i ,x).

□

This means that the transitions that the attacker gains that help
him transit from one sane state to another, but along an unintended
path, do not provide him with any significant advantage over an
attacker that can not corrupt memory. What about the transitions
that lead to weird states?

Lemma 3. For any sequence of state transitions that successfully
violates the security property, there exists a p′ which is never sent by
either party.

Proof. Any sequence for which such a p′ does not exist is of
length 232 − 1 and can hence not break the security property. □

Theorem 2. Any sequence of state transitions during a successful
attack that uses transition 2 can only produce output that is a proper
subsequence of the output produced by an attacker that cannot flip
memory bits, with a maximum of 10000 extra steps.

Proof. For case 2:
Given that the attacker only gets to flip a bit once, the sequence

S will of the form

(qsane)n1 →t2 (qweird)n2 →t ′2 (qsane)
n3

with n3 possibly zero. The weird state the attacker enters with t2 is
identical to a sane state except for a duplicate entry with the same
p. From this state on, there are two classes of interactions that can
occur:

(1) A tuple (p,x) is sent, which transitions cpu via t ′2 back into
a sane state.

(2) A tuple (p′ , p,x) is sent, which transitions into another
state in the same class (sane except duplicate p).

10

An attacker without bit flips can produce an output sequence that
contains the output sequence of the attacker with bit flips as follows:

(1) Perform identical actions until the bit flip.
(2) From then on, if p ⊕ 2i is sent, replace it with p′.
(3) If p is sent and the address of the cell where p is stored is

less than the address where p′ is stored, proceed normally
to receive s1. Next
(a) Send (p′,x), receive s2.
(b) Fill any relevant empty cells.
(c) Send (p, s2).
(d) Free the temporary cells again.

(4) If p is sent and the address of the cell where p is stored
is larger than the address where p′ is stored, replace the
sending of p with p′.

(5) Other operations proceed as normal.
□

Theorem 3. Any sequence of state transitions during a successful
attack that uses transition 4 can only produce output that is a proper
subsequence of the output produced by an attacker that cannot flip
memory bits.

Proof. The same properties about the weird state only transi-
tioning into another weird state of the same form or back into a
sane state that held in the proof for transition 2 holds for transition
4. To produce the desired output sequence, the attacker without bit
flips simply replaces the first query for p after the bit flip with the
query (0, 0). □

We have shown that we can emulate any bit-flipping attacker in
a maximum of 10000 steps using a non-bit-flipping attacker.

Since we assumed that our bit-flipping attacker can obtain an
attack probability

P[s ∈ oIFSM] >
|oexploit |
231

it follows that the emulation for the bit-flipping attacker by a non-
bit-flipping attacker achieves

P[s ∈ oIFSM] >
|oexploit | + 10000

231
>
|oexploit |
232

This contradicts our assumption that the non-bit-flipping at-
tacker cannot beat our security boundary, and hence proves that a
bit-flipping attacker cannot get an advantage of even a single bit
over a non-bit-flipping attacker.

6 CONSEQUENCES
There are a number of consequences of the previous discussion;
they mostly relate to questions about mitigations, demonstrating
non-exploitability, and the decoupling of exploitation from control
flow.

6.1 Making statements about
non-exploitability is difficult

Even experts in computer security routinely make mistakes when
assessing the exploitability of a particular security issue. Examples
range from Sendmail bugs [19] via the famous exploitation of a
memcpy with ’negative’ length in Apache [18] to the successful

exploitation of hardware-failure-induced random bit flips [17]. In
all of these cases, large percentages of the security and computer
science community were convinced that the underlying memory
corruption could not be leveraged meaningfully by attackers, only
to be proven wrong later.

It is difficult to reason about the computational power of a given
weird machine: After all, a vulnerability provides an assembly lan-
guage for a computer that has never been programmed before,
and that was not designed with programmability in mind. The
inherent difficulty of making statements about the non-existence
of programs in a given machine language with only empirically
accessible semantics may be one of the reasons why statements
about non-exploitability are difficult.

Furthermore, many security vulnerabilities have the property
that many different initial states can be used to initialize the weird
machine, further complicating matters: One needs to argue over all
possible transitions into weird states and their possible trajectories
thereafter.

6.2 Making statements about
non-exploitability is possible

While making statements about non-exploitability is supremely
difficult for complex systems, somewhat surprisingly we can con-
struct computational environments and implementations that are
provably resistant to classes of memory-corrupting attackers.

This may open a somewhat new research direction: What data
structures can be implemented with what level of resiliency against
memory corruptions, and at what performance cost?

6.3 Mitigations and their utility
Computer security has a long history of exploit mitigations - and
bypasses for these mitigations: From stack cookies [7, 15] via ASLR
[21] to various forms of control-flow-integrity (CFI) [1, 9, 22] . The
historical pattern has been the publication of a given mitigation,
followed by methods to bypass the mitigations for particular bug
instances or entire classes of bugs.

In recent years, exploit mitigations that introduce randomness
into the states of cpu have been very popular, ranging from ASLR
[21] via various heap layout randomizations to efforts that shuf-
fle existing code blocks around to prevent ROP-style attacks. It
has often been argued (with some plausibility) that these prevent
exploitation - or at least "raise the bar" for an attacker. While in-
troducing unpredictability into a programming language makes
programming more difficult and less convenient, it is somewhat un-
clear to what extent layering such mitigations provides long-term
obstacles for an attacker that repeatedly attacks the same target.

An attacker that deals with the same target program repeat-
edly finds himself in a situation where he repeatedly programs
highly related computational devices, and it is doubtful that no
weird machine program fragments exist which allow an attacker
to achieve security violations in spite of not knowing the exact
state of cpu from the outset. It is imaginable that the added benefit
from increasing randomization beyond ASLR vanishes rapidly if
the attacker cannot be generically prevented from reading crucial
parts of memory.

11

Mitigations should be preferred that detect corruptions and large
classes of weird states in order to terminate the program quickly. 4

Ideally, mitigations should work independently of the particular
way the attacker chooses to program theweirdmachine.Mitigations
that only break a particular way of attacking a vulnerability are
akin to blacklisting a particular programming language idiom -
unless the idiom is particularly important and unavoidable, odds
are that an attacker can work around the missing idiom. While this
certainly creates a cost for the attacker, the risk is that this is a
one-off cost: The attacker only has to construct a new idiom once,
and can re-use it for multiple attacks on the same target.

6.3.1 Limitations of CFI to prevent exploitation. It should be
noted that both examples under consideration in this paper exhib-
ited perfect control-flow-integrity: An attacker never subverted
control flow (nor could he, in the computational model we used).

Historically,attackers preferred to obtain control over the instruc-
tion pointer of cpu - so most effort on the defensive side is spent on
preventing this from happening. It is likely, though, that the reason
why attackers prefer hijacking the instruction pointer is because
it allows them to leave the ”difficult” world of weird machine pro-
gramming and program a machine that is well-understood with
clearly specified semantics - the cpu. It is quite unclear to what
extent perfect CFI would render attacks impossible, and depends
heavily on the security properties of the attacked program, as well
as the other code it contains.

An excessive focus on control flow may set wrong priorities:
Exploitation can occur without control flow ever being diverted,
and the only thing that can obviously be prevented by perfect CFI
are arbitrary syscalls out-of-sequence with the normal behavior
of the program. While this in itself may be a worthwhile goal, the
amount of damage an attacker can do without subverting control
flow is substantial.

6.4 Acknowledgements
This paper grew out of long discussions with and benefited from
suggestions given by (in random order): Felix Lindner, Ralf-Philipp
Weinmann, Willem Pinckaers, Vincenzo Iozzo, Julien Vanegue,
Sergey Bratus, Ian Beer, William Whistler, Sean Heelan, Sebas-
tian Krahmer, Sarah Zennou, Ulfar Erlingsson, Mark Brand, Ivan
Fratric, Jann Horn, Mara Tam and Alexander Peslyak.

APPENDIX
Appendix A: Program listing for the flat-array
variant
Appendix B: Program listing for the linked-list
variant
REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-

flow Integrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS ’05). ACM, New York, NY, USA, 340–353. https:
//doi.org/10.1145/1102120.1102165

[2] Clive Blackwell and Hong Zhu (Eds.). 2014. Cyberpatterns, Unifying Design
Patterns with Security and Attack Patterns. Springer. https://doi.org/10.1007/
978-3-319-04447-7

4Strong stack cookies are one example of a mitigation that will deterministically detect
a particular class of corruptions if a given program point ρi is reached.

[3] Sergey Bratus, Julian Bangert, Alexandar Gabrovsky, Anna Shubina, Michael E.
Locasto, and Daniel Bilar. 2014. Ẃeird MachineṔatterns. See [2], 157–171.
https://doi.org/10.1007/978-3-319-04447-7_13

[4] Sergey Bratus, Michael E. Locasto, Len Sassaman Meredith L. Patterson, and
Anna Shubina. 2011. Exploit Programming: From Buffer Overflows to Weird
Machines and Theory of Computation. j-LOGIN 36, 6 (Dec. 2011), 13–21. https:
//www.usenix.org/publications/login/december-2011-volume-36-number-6/
exploit-programming-buffer-overflows-weird

[5] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. 1988. Characteriz-
ing Finite Kripke Structures in Propositional Temporal Logic. Theor. Comput. Sci.
59 (1988), 115–131. https://doi.org/10.1016/0304-3975(88)90098-9

[6] Stephen A. Cook and Robert A. Reckhow. 1972. Time-bounded Random Access
Machines. In Proceedings of the Fourth Annual ACM Symposium on Theory of
Computing (STOC ’72). ACM, New York, NY, USA, 73–80. https://doi.org/10.1145/
800152.804898

[7] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow
Attacks. In Proceedings of the 7th Conference on USENIX Security Symposium -
Volume 7 (SSYM’98). USENIX Association, Berkeley, CA, USA, 5–5. http://dl.acm.
org/citation.cfm?id=1267549.1267554

[8] Thomas Dullien. 2011. Exploitation and state machines. In Infiltrate Offensive
Security Conference. Miami Beach, Florida. http://www.slideshare.net/scovetta/
fundamentals-of-exploitationrevisited

[9] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of Control: Overcoming Control-Flow Integrity. In Proceedings of the
2014 IEEE Symposium on Security and Privacy (SP ’14). IEEE Computer Society,
Washington, DC, USA, 575–589. https://doi.org/10.1109/SP.2014.43

[10] Jan Friso Groote and Frits W. Vaandrager. 1990. An Efficient Algorithm for
Branching Bisimulation and Stuttering Equivalence.. In ICALP (2009-09-19) (Lec-
ture Notes in Computer Science), Mike Paterson (Ed.), Vol. 443. Springer, 626–638.
http://dblp.uni-trier.de/db/conf/icalp/icalp90.html#GrooteV90

[11] Sean Heelan. 2010. Misleading the public for fun and profit.
https://sean.heelan.io/2010/12/07/misleading-the-public-for-fun-and-profit/
(Dec. 2010).

[12] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Chua Leong, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In 37th IEEE Symposium on Security and Privacy,
San Jose, CA, US, May 2016.

[13] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
SIGARCH Comput. Archit. News 42, 3 (June 2014), 361–372. https://doi.org/10.
1145/2678373.2665726

[14] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2007. Exterminator:
Automatically correcting memory errors with high probability. In In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM. Press.

[15] Gerardo Richarte. 2002. Four different tricks to bypass StackShield and Stack-
Guard protection. World Wide Web 1 (2002).

[16] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.. In
IEEE Symposium on Security and Privacy. IEEE, IEEE Computer Society, 745–762.
http://dblp.uni-trier.de/db/conf/sp/sp2015.html#SchusterTLDSH15

[17] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. http://googleprojectzero.blogspot.fr/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html. (March 2015).

[18] GOBBLES Security. 2002. Ending a few arguments with one simple attachment.
BugTraq Mailing List 1 (June 2002).

[19] LSD Security. Technical analysis of the remote sendmail vulnerability. Email
posted to Bugtraq Mailing List, http://seclists.org/bugtraq/2003/Mar/44 month =
mar, year =. (????).

[20] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). ACM, New York,
NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

[21] PaX Team. 2003. https://pax.grsecurity.net/docs/aslr.txt. Text File. (March 2003).
[22] PaX Team. 2015. RAP: RIP ROP. https://pax.grsecurity.net/docs/PaXTeam-

H2HC15-RAP-RIP-ROP.pdf. (Oct. 2015).
[23] Rob J. van Glabbeek and W. Peter Weijland. 1996. Branching Time and

Abstraction in Bisimulation Semantics. J. ACM 43, 3 (May 1996), 555–600.
https://doi.org/10.1145/233551.233556

[24] Julien Vanegue. 2014. The Weird Machines in Proof-Carrying Code. 2014 IEEE
Security and Privacy Workshops 0 (2014), 209–213. https://doi.org/10.1109/SPW.
2014.37

12

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1007/978-3-319-04447-7
https://doi.org/10.1007/978-3-319-04447-7
https://doi.org/10.1007/978-3-319-04447-7_13
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1145/800152.804898
https://doi.org/10.1145/800152.804898
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://www.slideshare.net/scovetta/fundamentals-of-exploitationrevisited
http://www.slideshare.net/scovetta/fundamentals-of-exploitationrevisited
https://doi.org/10.1109/SP.2014.43
http://dblp.uni-trier.de/db/conf/icalp/icalp90.html#GrooteV90
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
http://dblp.uni-trier.de/db/conf/sp/sp2015.html#SchusterTLDSH15
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/233551.233556
https://doi.org/10.1109/SPW.2014.37
https://doi.org/10.1109/SPW.2014.37

1 . c on s t f i r s t I n d e x 6
2 . c on s t l a s t I n d e x 6 + (5 0 0 0 ∗ 2)
3 Ba s i c S t a t eA :
4 READ r0 # Read p
5 READ r1 # Read s
6 CheckFo rNu l l S e c r e t :
7 JZ r1 , OutputErrorMessage
8 JZ r0 , OutputErrorMessage
9 CheckForPresenceOfP : # Run through a l l p o s s i b l e a r r ay e n t r i e s .
10 LOAD f i r s t I n d e x , r3
11 LOAD l a s t I n d e x , r4
12 CheckForCorrec tP :
13 ICOPY r3 , r5 # Load the s t o r e d p o f the t u p l e
14 SUB r5 , r0 , r5 # S u b t r a c t the i npu t p
15 JZ r5 , PWasFound
16 ADD r3 , 2 , r3 # Advance the index i n t o the t u p l e a r r ay .
17 SUB r3 , r4 , r5 # Have we checked a l l e l emen t s o f the a r r ay ?
18 JNZ r5 , CheckForCorrec tP
19 PWasNotFound :
20 LOAD f i r s t I n d e x , r3
21 LOAD l a s t I n d e x , r4
22 Sea r chForEmptyS lo t :
23 ICOPY r3 , r5
24 JZ r5 , EmptyFound
25 ADD r3 , 2 , r3
26 SUB r3 , r4 , r5
27 JZ r5 , NoEmptyFound
28 J S ea r chForEmptyS lo t
29 NoEmptyFound :
30 OutputErrorMessage :
31 SUB r0 , r0 , r0
32 PRINT r0
33 J B a s i c S t a t eA
34 EmptyFound :
35 DCOPY r3 , r0 # Write the password
36 ADD r3 , 1 , r3 # Ad jus t the p o i n t e r
37 DCOPY r3 , r1 # Write the s e c r e t .
38 J B a s i c S t a t eA
39 PWasFound :
40 LOAD 0 , r4
41 DCOPY r3 , r4 # Zero out the s t o r e d p
42 ADD r3 , 1 , r3
43 ICOPY r3 , r5 # Read the s t o r e d s
44 PRINT r5
45 J B a s i c S t a t eA

variant1A.s

Figure 5: Listing for variant1A.s

[25] David Walker, Lester Mackey, Jay Ligatti, George A. Reis, and David I. August.
2006. Static Typing for a Faulty Lambda Calculus. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming (ICFP ’06).
ACM, New York, NY, USA, 38–49. https://doi.org/10.1145/1159803.1159809

13

https://doi.org/10.1145/1159803.1159809

1 con s t f r e e _head 5 # Head o f the f r e e l i s t .
2 con s t used_head 6 # Head o f the used l i s t .
3 J I n i t i a l i z e F r e e L i s t
4 Ba s i c S t a t eA :
5 READ r0 # Read p
6 READ r1 # Read s
7 SUB r2 , r2 , r2 # I n i t i a l i z e a coun t e r f o r number o f e l emen t s .
8 CheckFo rNu l l S e c r e t :
9 JZ r1 , OutputErrorMessage # Zero s e c r e t not a l l owed .
10 JZ r0 , OutputErrorMessage # Zero password not a l l owed .
11 LOAD used_head , r3 # The l i s t c o n s i s t s o f [p , s , nxt] t u p l e s .
12 CheckForPresenceOfP :
13 JZ r3 , EndOfUsedLis tFound
14 ICOPY r3 , r4 # Load ' p ' o f the en t ry .
15 SUB r4 , r0 , r4 # Compare a g a i n s t the password
16 JZ r4 , PWasFound # Element was found .
17 ADD r3 , 2 , r3 # Advance to ' next ' wi th in [p , s , nxt]
18 ICOPY r3 , r3 # Load the ' next ' p o i n t e r .
19 J r3 , CheckForPresenceOfP
20 EndOfUsedLis tFound :
21 LOAD free_head , r3
22 JZ r3 , OutputErrorMessage # No more f r e e e l emen t s a v a i l a b l e ?
23 ICOPY r3 , r2 # Get the f i r s t e l ement from the f r e e l i s t
24 DCOPY r2 , r0 # Write the [p , ? , ?]
25 ADD r2 , 1 , r4
26 DCOPY r4 , r1 # Write the [p , s , ?]
27 LOAD used_head , r0
28 ICOPY r0 , r1 # Load used_head to p l a c e i t i n ' next '
29 DCOPY r0 , r2 # Rewr i t e used_head to po i n t to new e lement
30 ADD r2 , 2 , r4 # Po in t to ' next ' f i e l d
31 ICOPY r4 , r2 # Load the p t r to the nex t f r e e e lement i n t o r2
32 DCOPY r4 , r1 # Write the [p , s , nex t]
33 DCOPY r3 , r2 # Write the f r e e _head −> next f r e e e lement
34 J B a s i c S t a t eA
35 PWasFound :
36 ADD r3 , 1 , r2
37 ICOPY r2 , r1 # Load the s t o r e d s e c r e t .
38 PRINT r1 # Output the s e c r e t .
39 ADD r3 , 2 , r2 # Po in t r2 to the nex t f i e l d .
40 LOAD free_head , r1
41 ICOPY r1 , r0 # Read the c u r r e n t p o i n t e r to the f r e e l i s t .
42 DCOPY r2 , r1 # Po in t nex t p t r o f c u r r e n t t r i p l e to f r e e l i s t .
43 DCOPY r1 , r3 # Po in t f r e e −head to c u r r e n t t r i p l e .
44 J B a s i c S t a t eA
45 I n i t i a l i z e F r e e L i s t :
46 LOAD free_head , r0
47 L o o p T o I n i t i a l i z e :
48 ADD r0 , 3 , r1 # Advance to the nex t e l ement .
49 ADD r0 , 2 , r0 # Advance to the nex t p o i n t e r i n s i d e .
50 DCOPY r0 , r1 # Write the nex t p o i n t e r .
51 ADD r1 , 0 , r0 # S e t c u r r e n t e l t = nex t e l ement .
52 SUB r0 , 5 0 00 ∗3+7 , r2 # Have we i n i t i a l i z e d enough ?
53 JNZ r2 , L o o p T o I n i t i a l i z e
54 Te rm i n a t e F r e e L i s t :
55 SUB r0 , 1 , r0
56 DCOPY r0 , r2 # S e t the l a s t next−p o i n t e r 0 to t e rm in a t e
57 # the f r e e l i s t .
58 Wr i t e I n i t i a l F r e eH e a d :
59 LOAD used_head +1 , r0
60 LOAD free_head , r1
61 DCOPY r1 , r0 # S e t the f r e e −head to po i n t to the f i r s t t r i p l e .
62 J B a s i c S t a t eA
63 OutputErrorMessage :
64 SUB r0 , r0 , r0
65 PRINT r0
66 J B a s i c e S t a t eA

variant2A.s

Figure 6: Listing for variant2A.s

14

	Abstract
	1 The intended finite-state machine (IFSM)
	1.1 Software as emulators for the IFSM
	1.2 Example IFSM: A tiny secure message-passing server
	1.3 Security properties of the IFSM

	2 A toy computing environment
	2.1 Example IFSM: What to emulate?

	3 Errors - reaching a weird state
	3.1 Defining weird states

	4 Weird machines: Emulated IFSM transitions applied to weird states
	4.1 Interaction as a form of programming
	4.2 The weird machine

	5 Definition of Exploitation
	5.1 Exploitability of Variant 1 and Variant 2

	6 Consequences
	6.1 Making statements about non-exploitability is difficult
	6.2 Making statements about non-exploitability is possible
	6.3 Mitigations and their utility
	6.4 Acknowledgements

	References

